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Small-amplitude oscillations of viscous, capillary bridges are characterized by their 
frequency and rate of damping. In turn, these depend on the surface tension and 
viscosity of the liquid, the dimensions of the bridge, the axial and azimuthal 
wavenumbers of each excited mode and the relative magnitude of gravity. Both 
analytical and numerical methods have been employed in studying these effects. 
Increasing the gravitational Bond number decreases the eigenvalues in addition to 
modifying the well-known Rayleigh stability limit for meniscus breakup. At  high 
Reynolds numbers results from inviscid and boundary-layer theories are recovered. 
At very low Reynolds numbers oscillations become overdamped. The analysis is 
applicable in measuring properties of semiconductor and ceramic materials at  high 
temperatures under well-controlled conditions. Such data are quite scarce. 

1. Introduction 
Static shapes and stability of a fluid mass placed between two solid surfaces and 

in the presence or absence of a gravitational field have been studied since the original 
work by Plateau (1863). Rayleigh (1879) has shown that fluid masses of cylindrical 
shape become unstable when the ratio of their length (L") to radius (&) exceds 2x. 
Under these conditions, small sinusoidal perturbations of wavelength 27& have less 
surface area than the cylinder of the same volume and capillary forces make the 
latter unstable. When gravity is present, instability arises even for smaller values of z. These values depend on the relative magnitude of surface tension and gravitational 
forces, i.e. the gravitational Bond number (Coriell, Hardy & Cordes 1977). Various 
aspects of the static problem have been reported; see, for example, Russo & Steen 
(1  986). 

There is renewed interest in the stability limit as well as the dynamics of liquid 
bridges owing to their employment in fabricating single semiconductor crystals of 
high purity from the melt according to the floating zone method (Brown 1988). In 
this process, resistive heating is used to form a molten bridge between a melting 
polycrystalline feed rod and a solidifying cylindrical crystal. Buoyancy -driven 
convection and capillary instabilities in the bridge are inevitable in the presence of 
gravity. Thus, crystals may be grown with conventional heaters, but their diameters 
are limited to less than about 1 em. This limitation is reduced considerably in a 
gravity-free environment. Even in space, the floating zone is susceptible to dynamic 
disturbances since it possesses a free liquid/gas interface. These may result from 
g-jitter, spacecraft manoeuvers and vibration of machines on board and may excite 

t Author to whom correspondence should be addressed. 



580 J .  Tsamopoulos, T.-Y. Chen and A .  Borkar 

oscillations of the free interface. Consequently, i t  is important to know the natural 
frequencies and decay rates of the zone after such disturbances. 

In  a different context, a floating zone has been proposed as a convenient system 
for simultaneously measuring surface tension and viscosity of ceramic materials a t  
high temperatures (1000-3000 "C). Existing data are extremely limited and 
somewhat unreliable. Currently available methods cannot be employed at these high 
temperatures or data produced are adversely affected by contamination of materials 
through contact with the apparatus used (Lihrmann & Haggerty 1985; Finucane & 
Olander 1969). In  contrast to this, aluminium oxides, for example, may be melted 
and heated up  to the desired temperature using a CO, laser beam. A carefully 
controlled axial excitation of the liquid zone will result in longitudinal capillary 
waves on the cylindrical surface which may be over- or underdamped. It is 
anticipated that the damping rate and oscillation frequency are directly related to 
surface tension and viscosity of the material, a t  that temperature. 

Certain preliminary experiments and analysis of the dynamics of a liquid zone 
have been performed by Fowle, Wang & Strong (1979). They used an experimental 
set-up similar to  Plateau's and water as the liquid in the zone. Their analysis is 
confined to either solid-body rotation or inviscid oscillation. The latter is adequate 
for water which, owing to its high surface tension (in the absence of contamination) 
and low viscosity, exhibits very small damping. However, this is not the case for 
most other materials, including either molten semiconductors or ceramics. Inviscid 
analysis in zero gravity has been performed also by Sanz (1985) and Sanz & Diez 
(1989) among others. They considered the effects of a liquid surrounding the bridge 
and of non-axisymmetric disturbances. Such an analysis cannot predict the damping 
rate of the oscillations and will have to allow for a slip velocity a t  the solid/liquid and 
liquid/liquid interfaces; see figure 8 in Sanz (1985). ' 

As an alternative method for measuring surface tension and viscosity of various 
materials, Trinh, Zwern & Wang (1982) and Trinh, Marston & Robey (1988) have 
proposed studying the oscillations of acoustically levitated drops. Sound waves are 
used to position the drop in an immiscible fluid as well as to  excite the oscillations. 
To account for small discrepancies from linear theory, the same authors have 
mentioned the drawbacks of this technique, namely ( 1 )  the levitation mechanism 
produces static drops that are not perfect spheres ; (2) non-axisymmetric oscillations, 
translation and rotation of the drops may be inadvertently induced within the 
acoustic well ; (3) usually, nonlinear effects are present. 

Several theoretical aspects of the oscillations of viscous drops have been studied 
since the original work of Chandrasekhar (1959). For example, Miller & Scriven 
(1968) analysed the linear modes of viscous drops immersed in another immiscible 
fluid and examined several limiting cases. They have shown that viscous boundary 
layers are formed on both sides of the liquid/liquid interface. Thus, viscous 
dissipation is induced, even when the viscosities of both fluids are small. Prosperetti 
(1980) and Basaran, Scott & Byers (1989) have presented numerical solutions to  the 
corrected form of the dispersion relation calculated by Miller & Scriven. Strani & 
Sabetta (1988) examined the effect of a solid support under the oscillating drop. In  
an effort to  explain observations by Trinh et al. (1982) related to large-amplitude 
oscillations, Tsamopoulos & Brown (1983) performed a weakly nonlinear analysis of 
inviscid oscillations. 

These investigations of drop vibrations immersed in another fluid are not suitable 
for crystal growth problems where the drop cannot be considered to be isolated. 
Moreover, experiments with acoustically levitated drops have the above-mentioned 
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shortcomings for measuring material properties. All these have prompted investi- 
gating the normal modes of liquid bridges. A boundary-layer analysis which is 
valid for fluids with large modified Reynolds numbers (Borkar & Tsamopoulos 1991) 
was followed by the present analysis, which is valid for arbitrary Re and delineates 
the limits of applicability of the former. 

The governing equations for both gravity and gravity-free cases are given in $2. 
These equations are linearized and the eigenvalue problem is formulated in $3. An 
analytical solution for axisymmetric disturbances in zero gravity is presented in $4. 
It is based on the separation of variables methodology for the biharmonic equation 
which was given first by Smith (1952). In contrast to  the normal mode analysis for 
either drop oscillations or liquid columns free from contact with solid boundaries, 
where the analysis is comparatively straightforward, it is found that each mode of 
the present system involves an infinite summation. This leads to  a complicated 
eigenvalue problem which requires extensive computational effort for its accurate 
solution. These semi-analytic results are used as a starting and testing point for the 
more extensive numerical ones that follow. To this end, the finite-element technique 
is employed in $5 in order to  reduce the differential eigenvalue problem to a 
generalized algebraic eigenvalue problem. Results and discussion follow in $6 and 
conclusions are drawn in $7.  

The present analysis has proven most valuable in undertaking numerical solutions 
of the full nonlinear problem and experiments. The former are computationally very 
expensive and time-consuming and they would be even more so in the absence of 
results presented here. The latter may proceed as follows. The surface tension of the 
fluid may be measured first by a static method. Experimental shapes of bridges or 
pendant drops are matched with calculated ones for various Bond numbers B. 
Knowledge of the fluid volume and gravitational acceleration will yield the surface 
tension (Padday 1971 ; Lihrmann & Haggerty 1985; Tsamopoulos, Poslinski & Ryan 
1988). Then, the present dynamic method may be used for viscosity measurements. 
Alternatively, only the dynamic method may be used to  experimentally measure 
resonance frequencies. Then the external forcing is removed and the damping rate is 
also measured. Figures and data provided herein and in Chen (1991) are used to 
calculate Re and B and, thus, surface tension and viscosity of the fluid. 

2. Governing equations 
is considered. As shown in figure 1, 

the bridge is situated between two stationary, solid and coaxial rods of equal radius 
g. The liquid wets the two planar surfaces which are at a distance L" from each other 
and forms a fixed and circular contact line on the edge of each one. It is assumed that 
the surrounding gas has negligible density and viscosity so that it does not affect the 
dynamics of the liquid bridge., Furthermore, bulk properties (density p and viscosity 
p )  as well as interfacial properties (surface tension y )  of the liquid are uniform and 
constant under the present isothermal analysis. 

This shape of the liquid bridge is sustained by capillary forces as long as the 
Plateau stability limit is not exceeded. Small disturbances may initiate motion of the 
liquid, which can be easily detected at the side surface. This motion is affected by the 
physical properties of the liquid and its static shape, which in turn depends on w, 
and gravity. Gravity acts downwards along the z-axis. The usual cylindrical 
coordinate system ( r ,  8, z )  with origin midway between the two solids and coaxial 
with them is defined. The corresponding components of velocity are v = (u, v, w). The 

A nearly cylindrical liquid bridge of volume 
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FIGURE 1 .  Schematic representation of a liquid bridge. 

goal is to calculate the eigenfrequencies and eigenmodes and relate them to the 
physical properties of this system. To this end, conservation equations of mass and 
momentum are written in dimensionless form : 

v - v  = 0 ,  (2.1) 

(2.2) Re (E - + v  * )  V v  = - R e V B + V - . r ,  

where the modified pressure is defined by 9 = P-Bz (Batchelor 1967) and the extra 
stress tensor is defined by T = [Vv+ ( V V ) ~ ] .  Variables have been rendered dim- 
ensionless with respect to their dimensional counterparts as follows : 

As a result, the gravitational Bond number B=pgfiE/ny (g is the gravitational 
acceleration) and the modified Reynolds number, Re = (pyfi)i/,u arise in (2.2). Since 
there is no characteristic velocity in this problem, only physical and geometrical 
properties appear in what is called the modified Re. The same group of parameters 
is sometimes referred to as the Suratman number, Su = py&/,u2, or the Ohnesorge 
number, Oh = ,u/(pyfi)i. Different len5thscales have been used in the radial and axial 
directions and their ratio, A = nfi /L,  is the third dimensionless parameter of this 
system. It arises, for example, in the dimensionless form of the gradient operator: 

a i a  a 
ar r ae a Z  

V = e , -+e , - -+e ,A- .  (2.3) 

The usual no-slip and no-penetration boundary conditions apply a t  both solid 
surfaces 

v = o ,  z =  *in. (2.4) 

When axisymmetric disturbances are considered, the azimuthal velocity is zero 
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throughout the bridge and the radial velocity and its derivative with respect to r are 
zero at the centreline. Combining this fact with (2.1) and (2.4) shows that the axial 
velocity also must be zero at the centreline. Therefore 

au 
ar u = - =  v=w=O, r = 0 .  ( 2 . 5 ~ )  

When non-axisymmetric disturbances are considered, the axial velocity a t  the 
centreline must remain independent of 8, which can only be satisfied if it is equal to 
zero. The condition on the radial and azimuthal velocities depends on the 
wavenumber, k, of the disturbance in the azimuthal direction (Preziosi, Chen & 
Joseph 1989) : 

k = l :  u+v=w=O, r = 0 ,  (2.5b) 

k 2 2 :  u=v=w=O, r = O .  ( 2 . 5 ~ )  

Moreover, at  the liquid/gas interface the tangential stresses must be zero and the 

t,.s = t , .s  = 0, r = f(8, z, t ) ,  (2.6) 

[Re(-P+Bz)!+s] -N+Re2XN = 0, r = f ( d , z , t ) .  (2.7) 

total normal stress must be balanced by the capillary force: 

In (2.6) and (2.7) the ambient pressure has been taken as the reference pressure and 
tB, t, and N are the unit tangents and outward-pointing normal to the interface, 
respectively. In the Mongd representation, a point on this interface can be described 
by the position vector F(B, z,  t )  = f(8, z, t )  e, +ze,; consequently, N is given by 

where the subscripts z and 8 denote partial differentiation with respect to that 
coordinate. Specific expressions for the tangent vectors will be@ven in the next 
section. The curvature of this interface, 2 X ,  has been scaled by R-l and is equal to 

where D = f z + f i + A ” f f i ,  see, for example, Tsamopoulos et al. (1988). 

condition. It equates the velocity of the surface to the fluid velocity there: 
Another boundary condition that arises at  the moving interface is the kinematic 

aF 
N - -  at = N.0,  r = f(8, z ,  t ) .  (2.10) 

Throughout the motion, the line of contact of the liquid/gas interface with each 
cylindrical rod remains fixed at the edge of each rod. According to the analysis by 
Benjamin & Scott (1979), this is the relevant condition, especially when a sharp 
corner is present in the supporting solid surface. Thus, 

f(8,t) = 1, z = *$. (2.11) 

Moreover, all velocity components and the liquid/gas interface must be periodic in 
the azimuthal direction with periodicity 21r : 

(2.12) f ( e ,  z, t )  = f ( ~ + 2 7 c ,  2 ,  t ) .  
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Finally, the volume of the liquid bridge must remain constant during the motion. 
Although other cases may be readily examined, volume is taken here to  be equal to 
the volume of the space between the rods: 

(2.13) 

3. Basic state and the eigenvalue problem 
I n  order to calculate the eigenvalues and eigenmodes of this system all equations 

will be linearized around a steady state. To this end, small and volume-preserving 
disturbances of amplitude 8 will be assumed for all dependent variables. Thus, 

u = v b + 8 v p $  P = p b + # p ,  f=fb+efp> T = T b + 8 T p ,  (3.1) 

where the subscript b indicates the base, static state and the subscript p indicates the 
perturbed one. Therefore, rb = 0, v b  = 0, Pb is the hydrostatic pressure, and fb is the 
static shape. If gravity effects are negligible, Pb = 1 and fb = 1.  On the other hand, 
if the gravitational Bond number is not zero, Pb =t= 1 and fb is a function of the axial 
distance. Both are calculated by solving the hydrostatic problem : 

(3.4) 

Since gravity acts along the common z-axis of the cylindrical rods, there will be no 
&dependence on the base shape, so that 

and Db = 1 +A2(afb/aZ)2. Introducing (3.1) into the governing equations of the 
previous section results in a set of equations for the perturbed variables: 

w . v p  = 0, (3.6) 
av  
at 

R e d =  -ReWPp+W..rp, (3.7) 

vp=o,  x = +$., (3.8) 

u p = v p = w p = O ,  r = O ,  k = O , 2 , 3 , 4  ,..., (3.9a) 

up+vp = wp = 0, r = 0, k = 1, (3.96) 

tO,b'Tp = ' z , l ~ ' ~ p  = O ,  r =fb(z) ,  (3.10) 

( - R ~ P , / + T ~ ) - N ~ + R ~ ~ ~ % , N ~  = 0, r = fb(z), (3.11) 

(3.12) 

f p = O  a t  z =  +in, fpdz = 0, (3.13a, b)  

(3.14) fp@, 2, t )  = fp(0+2n, 2, t ) .  
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In the equations above 

(3.15) 

When B = 0, (3.5) and (3.15) reduce to 2Xb = 1, Nb = e,, and f Z , b  = e,. The 
perturbed form of the surface curvature is the first-order term in a Taylor series 
expansion of 2X around its base state. In the absence of gravity and for general 
three-dimensional disturbances 

(3.16) 

When gravitational effects are accounted for, but only two-dimensional disturbances 
are considered 

Finally, according to the usual normal mode methodology all perturbed variables are 
decomposed as 

up(r ,  8, z, t )  = G(r, z )  eikeePnt, wp(r, 8, z, t )  = iv"(r, z )  eikee-ut 

wp(r, 8, z, t )  = G(r,  z )  eikeeVut, 1 (3.18) 

where k is the wavenumber in the azimuthal direction and a is the eigenvalue of the 
system which is complex in general, r~ = a,+ ia,. After introducing (3.18) into the 
equations for the perturbed variables, an equation set is obtained that is similar to 
the above one except for two substitutions: a( )/at+-a( ), a( )/ae+ik( ). 

Typically, a distinct eigenvalue corresponds to each eigenmode. If the real part of 
all eigenvalues is positive, the system is linearly stable, and the distinct values of a, 
and ri correspond to the damping rate and frequency of each mode, respectively. On 
the other hand, if the real part of even one eigenvalue is negative the system is 
unstable. Clearly the values of u depend on the parameters of the system (Re, B,  A ,  
k). In physical space, the point at which ur = 0 is called a bifurcation point. 

Pp(r, 8, z,  t )  = P(r ,  z )  eikee-"t , fp(8, z,  t )  = k z )  eikee-ut, 

4. Analytical solution for axisymmetric disturbances in zero gravity 
(B = k = 0) 

In the absence of gravity (B = 0) and when only axisymmetric disturbances are 
considered (k = 0), introducing the stream function, $, facilitates the analysis. The 
usual definition of the stream function, 

reduces (3.7) to 

where 
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(4.4) 

(4.5) 

(4.7) 

Equations (4.3)-(4.7) result from inserting definition (4.1) in (3.8)-(3.12) of the 
previous section. A general solution for + can be found by separation of variables. 
The methodology in a simpler setting is given in the original work by Smith (1952) 
and has been applied by Joseph and co-workers in several problems (e.g. Yo0 & 
Joseph 1978; Joseph, Sturges & Warner 1982). However, the current physical 
problem is time-dependent and in addition periodicity in the axial direction cannot 
be invoked. Therefore, a different eigenvalue problem must be solved. Very briefly, 
the even-mode solution to (4.2) subject to conditions (4.3) and (4.4) is 

and the odd-mode solution is 

(4.9) 

where I ,  is the modified Bessel function of the first kind and of order one. Also, Zen(z )  
is the solution to the following eigenvalue problem : 

(4.10) 

so that 

and the eigenvalues are given by 

Similarly, Zon(z )  is the solution to the following eigenvalue problem : 

(4.12) 

(4.13) 

(4.14) 
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and the eigenvalues are given by 
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(4.15) 

(4.16) 

(4.17) 

Next, i@/dz a t  the liquid/gas interface is calculated in terms of $ uFing the z- 
component of (3.7). The result is introduced in (4.6), which is solved for f subject to 
the conditions 

A+&) = 0, rx2 f A dz = 0. (4.18) 

Finally, (4.5) and (4.7) are two homogeneous equations, and are arranged so that the 
solvability condition may be readily applied. The latter is obtained by taking the 
inner product of these equations with the adjoint eigenvectors, Xen and X&. In the 
process, the biorthogonality condition is used, which states that 

(4.19) 

where a,, is the delta function (anrn = 0, if n += m ;  a,, = 1 ) ;  D,, is a constant, and 
(X, , ,X,*,)  are the solutions to the adjoint eigenvalue problem: 

(4.20) 

(4.21) 

The form of the adjoint problem for the odd eigenfunctions is similar. The resulting 
homogeneous set of linear algebraic equations for each of the set of coefficients {Cen} 
or (Con> has a non-trivial solution when the determinant of the corresponding matrix 
is zero. Standard IMSL routines are used (DLFTCG, DLFDCG) for the calculation of 
this determinant. 

The numerical procedure is the following : 
(I) Given a set of parameters (A,Re),  a value of u is assumed according to results 

from the asymptotic theory (Re + a), see Borkar & Tsamopoulos (1991) and Borkar 
(1989). 

(11) The first N roots of (4.13) or (4.17) are generated using a Newton-Raphson 
scheme. 

(111) These values of {aln,a2n} or {p1,,/3,,} are inserted into the solvability 
condition and the determinant of the matrix is calculated. If it is close to zero, the 
assumed value of u is accepted upon verification with a larger value of N and the 
search is repeated for a new set of parameters; if it is not zero, this procedure is 
repeated with a new guess for CT. 

This search is very tedious because, depending on the parameter values, up to 
N = 60 terms were required for convergence of the series and the calculated 
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determinant varied widely. Alternatively, the procedure suggested by Strani & 
Sabetta (1988) can be followed. Their physical problem is quite different from the one 
examined here and i t  is more readily amenable to semi-analytic calculations. 
However, here also the determinant of the homogeneous set of equations for the 
coefficients {C,,} or {C,,} can be solved for v, which arises in these equations both 
explicitly and implicitly. Therefore, a Newton-Raphson procedure is needed and 
special care must be taken for a ‘good’ initial guess and for convergence to the 
specific eigenvalue sought. Truncation error of the infinite series may be significant 
and may introduce spurious wiggles even a t  the lower modes (see Strani & Sabetta 
1988). Therefore, both these schemes are more reliable a t  high Re, where convergent 
values (with increasing N )  were obtained and are used primarily in order to  verify 
results from asymptotic theory and from numerical calculations which are presented 
next. 

5. Numerical solution 
Equations (3.6)-( 3.14) will be reduced to an algebraic generalized eigenvalue 

problem for v. To this end, they are discretized by the finite-element method. 
Velocity components, perturbed pressure, and perturbed shape are represented by 
biquadratic Lagrangian functions, $ i ( r ,  z ) ,  bilinear Lagrangian functions, Xi(r, z ) ,  
and quadratic Lagrangian functions Q,(z), respectively : 

(5.1) I N N N 

i ( r ,  2) = C ui $ i ( r ,  z ) ,  i ( r ,  2) = C vi $ i ( r ,  z ) ,  4 r ,  z )  = C q $@, z ) ,  
i -1  i -1  i -1  

M L 

p ( r , ~ )  = C P , X i ( r , z ) ,  A z )  = Z f i Q i ( z ) ,  
i -1  i= l  

where L,  M ,  and N are the number of coefficients in each expansion. Galerkin’s 
procedure is employed in order to construct the residual equations. Equations (3.6), 
(3.7) and (3.12), are multiplied by the trial functions Xi, $, and Q,, respectively, and 
they are integrated over the domain. Integration by parts or the divergence theorem 
are applied, where necessary, in order to reduce second-order derivatives to first- 
order ones. Boundary conditions are directly applied on the boundary integrals. 
Thus, the weak form of the governing equation is obtained: 

5.1. Axisymmetric disturbances ( k  = 0,6 = $e,+de,) 

R,, = r2 Qi(  ” -gf+A--zi,-zi afb 
-n/z aZ (5-4) 

The residuals, R,,, RMi and R,, correspond to continuity, momentum and kinematic 
equations. I n  these general expressions dA = rdrdz with 0 < r <fb(z), t7’C < Z < & 
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and 2 Z p  is given by (3.17). If B = 0, the base state reduces to a cylinder, fb = 1 and 
Nb = e,, and (5.3) and (5.4) are simplified. If B + 0, the base state must first be 
numerically calculated very accurately. To this end, (3.2)-(3.5) must be solved in a 
procedure similar to that employed by Tsamopoulos et al. (1988). Up to 100 
quadratic elements have been used for this static problem. Numerical solutions 
compare very well to those obtained by Coriell et al. (1977) in terms of critical Bond 
numbers for different aspect ratios. Subsequently, fb and its first and second 
de;ivatives are calculated, where required, using cubic splines. The second derivative 
a2flaz2 that arises in (3.17) must be further integrated by parts. 

5.2. Three-dimensional disturbances in zero gravity (B = 0, k + 0) 
In this case, the base state and the domain of integration are cylindrical, i.e. fb = 1 ,  
Nb = e, (0 < r < 1, -in < z < in), and 2Zp is given by (3.16). Galerkin's residual 
equations become 

-n/2 

R,, = rz -n/2 I:{ - R e C T $ i v " + R e & k P + ( ~ ~ - $ ) ( r ~ - v " + k G )  r 

k 
r 

RKj  = r/' SZ,(aj+zi)dz. (5.9) 
J - X / Z  

The residuals RMri,  R,,, RMzi correspond to the three components of the momentum 
equation. 

Equations (5.2)-(5.4) or (5.5)-(5.9) constitute a generalized eigenvalue problem of 
the form 

AX = CTBX, (5.10) 

where A and B are coefficient matrices and x is the eigenvector corresponding to the 
eigenvalue CT. An IMSL routine (DGVLRG) is used first in order to calculate the 
complex eigenvalues for a set of parameters. Owing to the large memory and storage 
requirements the eigenvectors cannot be calculated directly using any commercial 



590 J .  Tsamopoulos, T.-Y. Chen and A .  Borkar 

software. Instead, for a given value of a, (5.10) is rearranged into an algebraic set of 
equations for x:  

(A-aB)x = 0. (5.1 1) 

A non-trivial solution to (5.11) is obtained by setting p(r = 0 , z  = in) = 1.0 which 
makes the matrix (A-aB) non-singular. This complex matrix has an arrow 
structure and is inverted by the efficient routine developed by Thomas & Brown 
(1987). The real parts of the complex eigenvectors correspond to  the physical 
variables of the problem. 

Several tests for accuracy of the numerical results have been performed : 
(I) For B = k = 0 and Re 2 1000, numerically computed eigenvalues agree very 

well with those obtained from the boundary-layer analysis (Borkar & Tsamopoulos 
1991). 
(11) For B = k = 0, Re = 100, 1000 and A = 2, numerically computed eigenvalues 

agree very well with those obtained from the analytical method presented in $4. 
Furthermore, Borkar (1989) has solved (4.2)-(4.6) by separation of variables after 
substituting the no-slip condition with the shear-free condition on the two 
solid/liquid interfaces. This modification allows for a much simpler analysis than 
that presented in $4  and still gives quite accurate results. These results compare well 
with the numerically computed ones. 

(111) The numerical algorithms for non-axisymmetric or non-zero gravity 
calculations reproduce exactly the results obtained earlier for B = k = 0. 

(IV) Convergence of eigenvalues has been verified by refinement of the mesh in 
both the r- and z-directions, see table 1. Eight elements were found to be sufficient 
in the radial direction. However, more elements are required in the axial direction in 
order to achieve a t  least 3 digits of accuracy in the first mode, especially for Re = 
1000 or larger. Unfortunately, the number of elements is restricted by either the 
virtual memory of the IBM 3090 a t  CNSF or the maximum size of matrix allowed 
by the software employed (IMSL or ESSL). It was found that the number of 
elements can be as high as eight radial and twelve axial. 

Such a discretization generates the matrices A and B each of size (899 x 899). 
Then, solution of the eigenvalue problem (5.10) requires 5600s of CPU on an 
IBM 3084 at the University of Buffalo or 650 s of CPU on the IBM 3090 a t  CNSF. 
Calculation of each eigenvector (5.11) requires only 70 s of CPU on an IBM 3084. It 
was also found that as B and/or l / A  increase towards the stability limit, the 
accuracy decreases. For example, if B = 2.5, A = 2.0, the first eigenvalue is correct to 
only one digit irrespective of the accuracy achieved in calculating the corresponding 
static shape. As a result, eigenvalues will be reported here only to  the computed 
accuracy. 

On the other hand, if B = 0 and for any integer value of k ,  the computational effort 
and requirements may be reduced by a factor of two or the accuracy may be 
increased. This is achieved by calculating separately the symmetric and anti- 
symmetric modes of the system. I n  the process, proper boundary conditions must be 
set at z = 0, so that only half of the domain is discretized (0 < r < 1 ,0  < z < in). 
These conditions are 

5.3. Symmetric modes 
Shapes of liquid bridges are symmetric about the midplane when 

af/az = 0, = 0. (5.12) 
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Mesh n = l  n = 2  n = 3  n = 4  
size 

( r  x 2) r r  6 1  g r  g i  U F  fli 6, g i  

5 x 5  0.01471 5.0894 0.0502 11.3859 0.109 20.216 0.232 36.28 
8 x 8  0.01505 5.0813 0.0501 11.2002 0.1077 19.005 0.187 28.34 
7 x 14* 0.01567 5.0821 0.0485 11.1699 0.1031 18.787 0.178 27.49 
8 x  14* 0.01557 5.0821 0.0483 11.1683 0.1022 18.780 0.179 27.47 
8 x  16* 0.01572 5.0828 0.0480 11.1679 0.1027 18.770 0.176 27.42 

TABLE 1 .  Eigenvalues of the first four axisymmetric modes with varying mesh size and for Re = 
1000, A = 2. Reported mesh sizes are equivalents for the full domain. An asterisk indicates that 
computation was carried out in a half-domain. 

Solutions then correspond to the odd modes in $4, so that shapes are described by a 
summation of cosines. Moreover, the radial and azimuthal components of velocity 
must be symmetric and the axial component of velocity must be zero. 

a q a z  = a q a z  = z; = 0, = 0. (5.13) 

By using (3.6) and (5.13) it may also be shown that 

az;/az = const, z = 0. (5.14) 

Finally, introducing (5.13) and (5.14) in the axial component of the momentum 
equation results in 

aP/az = 0, = 0. (5.15) 

5.4. Antisymmetric modes 
Antisymmetric shapes of liquid bridges arise when the radial and azimuthal 
components of velocity assume the same numerical value, but opposite signs above 
and below the midplane : 

6 lz-+& = -z; Iz--Az, 

Since velocity is a continuous function, it 

Combining (5.17) and (3.6) yields 

az; 
a Z  
- = 0, 

Also, due to (5.16) and (5.17), 

az; I 

z = O ,  n =  1,2, . .  

z = 0. 

ad I 
- =- 
aZ Iz-+Az az lz--Az' 

and in the limit of Az-tO, 

(5.16) 

(5.17) 

(5.18) 

(5.19) 

(5.20) _-  - 0, z = 0. 
a24 
a z 2  
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Substitution of (5.17), (5.18) and (5.20) into the radial component of the momentum 
equation reduces it to @ / a r ( z  = 0) = 0, which upon integration gives 

F = const, z = 0. (5.21) 

Without loss of generality, this constant is taken to be equal to zero. Finally, 

f = O ,  z = o .  (5.22) 

Numerical solutions of antisymmetric modes correspond to the even modes of $4, 
where shapes are described by summation of sines. 

Eigenvalues and eigenvectors computed using the above-derived boundary 
conditions with eight radial and four axial elements in the half-domain are in 
excellent agreement with those computed with eight, radial and eight axial elements 
in the full domain. Finer discretization was performed in the axial direction until four 
significant digits were accurately calculated for the primary eigenvalue. This 
required eight axial elements. The size of each matrix with this (8 x 8)  finite-element 
mesh in the half-domain reduces to (599 x 599). Solution of the eigenvalue problem 
(5.10) requires 1400 s of CPU on an IBM 3084. 

When the Rayleigh limit is approached ( A  = 0.5) the primary eigenvalue gets very 
close to zero (bifurcation point). Then, 12 axial elements were used for the half- 
domain in order to get accurate results. When the Rayleigh limit is exceeded ( A  = 
0.45) the first eigenvalue becomes negative (unstable system), but this refined mesh 
is still more than adequate. 

according to the kinematic condition, 

6. Results and discussion 
According to the normal-mode analysis, (3.18), the liquid bridge undergoes a 

linearly stable motion if a, > 0, or it is linearly unstable if a, < 0. The stable motion 
is either an underdamped oscillation if ai + 0 or an overdamped oscillation if gi = 
0. The effect of the various parameters of the system on the eigenvalues and 
eigenvectors is discussed next. The reported results are based on the finite-element 
calculations and coincide with the analytical ones when the latter converge. 

6.1. Axisymmetric disturbances in zero gravity ( k  = B = 0) 
I n  the absence of gravity, a static liquid bridge of volume = 7cB2E has a cylindrical 
stable shape if the ratio L"/B is below the Rayleigh limit of 27c. This requirement 
translates into A > 0.5 according to the present definition of aspect ratio ( A  = 
d?/L"). When B = k = 0, the particular response of the liquid bridge to infinitesimal 
and axisymmetric disturbances depends only on the modified Re and on A .  If = 
0.5 cm, Re x 550 for uncontaminated water, whereas it is expected to  vary between 
2 and 50 for most moltcn semiconductors and ceramics, depending on the 
temperature. 

Figures 2 and 3 show the damping rate (a,) and frequency (ci) of the first four 
modes as a function of the aspect ratio and for Re = 10 and 500, respectively. The 
very good agreement between the present results for ai at  Re = 500 and the inviscid 
theory (Sanz 1985) should be noted. Clearly, the inviscid theory would predict g, = 
0 for all parameter values. As expected, the higher modes exhibit larger a, and ai for 
the same values of A and Re. Furthermore, increasing A results in larger damping 
rates of each mode even when Re is larger. This is due to the more significant viscous 
dissipation that occurs in the increased solid/liquid contact area for the same zone 
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FIGURE 2. (a) Damping rate and ( b )  frequency of the first four axisymmetric modes as a 
function of aspect ratio for Re = 10. Open circles indicate numerical results of this work. 

length. Similarly, increasing A results in larger frequencies due to the relatively 
decreased side area and the more restrained motion of fluid. Tables 2 and 3 provide 
the eigenvalues for the first four modes. The real part of the first eigenvalue is very 
nearly zero at  A = 0.5 and becomes negative at  A = 0.45 for either value of Re. 
Consequently, the first mode becomes unstable at A = 0.5, whereas the higher ones 
remain stable in accordance with results from static analysis. 

The effect of the modified Re on the system eigenvalues is shown in figure 4 for 
A = 2. Increasing Re results in reduced values for the damping rates to almost zero 
values for all modes. At the same time the existence of multiple eigenvalues with real 
parts close to zero for Re > 500 makes computations harder. The inviscid theory 
(Sanz 1985) predicts zero damping irrespective of Re, whereas the boundary-layer 
theory (Borkar & Tsamopoulos 1991) becomes asymptotically correct for Re > 50 
and more so for the lower mode. Increasing Re results in increased values for the 
frequency, which asymptotically approach the predictions of the boundary-layer 
theory for every mode considered. As Re decreases below approximately 3, the 
frequencies drop sharply towards zero. Unfortunately, our calculations had limited 
accuracy and identifying each computed eigenmode became a very difficult task for 
Re < 2.5. However, it is anticipated that there will be values of Re a t  which the 
oscillations will become overdamped, i.e. the two complex conjugate eigenvalues will 
be replaced by two real and positive ones (see Prosperetti 1980 and Strani & Sabetta 
1988). As seen in figure 4 (b ) ,  this occurs for the higher modes first (n = 4), and as Re 

, 
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FIGURE 3. (a) Damping rate and (b) frequency of the first four axisymmetric modes as a function 
of aspect ratio for Re = 500. Open circles indicate numerical results of this work, solid circles 
indicate results by Sanz & Diez (1989). I n  the insert and for 0.45 < A < 0.5 straight lines have been 
used to connect numerical results. 

n =  1 

A 

5 
4 
3 
2 
1 
0.75 
0.5 
0.45 

c r  

5.824 
3.698 
2.032 
0.846 
0.187 
0.104 
10-13 

-0.123 
0.203 

c i  

21.09 
15.01 
9.554 
4.859 
1.273 
0.638 
0 
0.000 
0.000 

n = 2  n = 3  

c r  (Ti 0, c1 

16.08 39.12 29.97 59.88 
10.49 28.51 19.75 44.16 
6.016 18.77 11.51 29.55 
2.706 10.19 5.31 16.43 
0.656 3.22 1.35 5.61 
0.362 1.86 0.75 3.42 
0.162 0.72 0.33 1.56 
0.133 0.51 0.26 1.23 
- - - - 

n = 4  

c r  ci 

47.03 81.18 
31.17 60.30 
18.32 40.83 
8.61 23.14 
2.26 8.25 
1.28 5.19 
0.56 2.54 
0.45 2.07 
- - 

TABLE 2. Real and imaginary part of eigenvalues of the first four axisymmetric modes with 
varying aspect ratio and for Re = 10 

decreases further the lower modes seem to follow the same pattern. Table 4 provides 
the calculated eigenvalues. 

Typical shapes for the first four modes are shown in figure 5.  They comprise part 
of the calculated eigenvectors. According to the analysis in $4, shapes of 
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n = l  n = 2  n = 3  n = 4  

A Qr Qi Qr (TI  Qr Q1 Qr =I 

5 0.244 
4 0.152 
3 0.079 
2 0.029 
1.50 0.014 
1 0.0048 
0.75 0.002 5 
0.5 0.0009 
0.45 -0.157 

23.13 
16.25 
10.18 
5.08 
2.99 
1.30 
0.65 
0.002 
0.00 

0.595 
0.384 
0.214 
0.091 
0.048 
0.019 
0.010 
0.004 
0.003 

46.80 
33.19 
21.23 
11.16 
6.95 
3.40 
1.94 
0.74 
0.53 

1.16 
0.77 
0.44 
0.19 
0.10 
0.043 
0.023 
0.009 
0.007 

77.31 
54.94 
35.28 
18.75 
11.86 
6.07 
3.65 
1.63 
1.20 

1.87 
1.27 
0.75 
0.34 
0.19 
0.08 
0.043 
0.018 
0.014 

111.5 
79.45 
51.18 
27.39 
17.48 
9.14 
5.65 
2.71 
2.20 

TABLE 3. Real and imaginary part of eigenvalues of the first four axisymmetric modes with 
varying aspect ratio and for Re = 500 

antisymmetric modes can be expressed in terms of an infinite summation of sines and 
shapes of symmetric ones in terms of summation of cosines. Alternatively, the 
calculated shapes may be decomposed into Fourier series. The Fourier coefficients 
are calculated in the usual way: 

f(z) sin (2mz) dz, m = 1,2 ,3 , .  . 

Table 5 gives the Fourier coefficients of the first ( n  = 1) axisymmetric mode for 
Re = 10,500. Note that all the coefficients of the cosine series are practically zero. In 
particular, a,, = lops; this small value of the zeroth coefficient reaffirms the high 
accuracy with which the volume of the liquid bridge is conserved. Moreover, b, is 
more dominant and coefficients decrease faster for Re = 500 than for Re = 10. 
Consequently, more Fourier modes and correspondingly more terms in the infinite 
summation in $4 are required for a converged solution as Re decreases. Similarly, all 
the coefficients of the sine series are practically zero, when the second or any 
symmetric shape with respect to the z = 0 plane is decomposed. 

6.2. Axisymmetric disturbances with gravity ( k  = 0, B + 0) 
In experiments that have taken place in spacecraft, gravity is reduced to as low as 
lo-* g and may become time-dependent owing to orbital motion (Zhang & Alexander 
1990). On the other hand, in earthbound applications gravity is always present and 
deforms the static cylindrical shape to an ‘amphora-like’ shape. In these 
experiments, and for liquid bridges with a = z = 0.5 cm, the Bond number for 
uncontaminated water is 1.1 and for most liquids of interest (y  x 30 g/s2) it is 2.6. 
Coriell et al. (1977) used variational calculus to determine stability of static shapes 
under gravity. They found that the critical B beyond which the bridge became 
unstable depended on the aspect ratio (see their figure 6). 

In a more general setting, Tsamopoulos et al. (1988) showed that the Rayleigh limit 
is a subcritical bifurcation from stable cylindrical shapes to unstable sinusoidal ones 
in an amplitude vs. aspect ratio plot; see the bifurcation point at  a = 0.15915 in their 
figure 2, which corresponds to the first bifurcation point for instability of a 
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FIQURE 4. (a)  Damping rate and ( b )  frequency of n = 1 (0,. . .), n = 2 (A, -.-), n = 3 (V, -...-) 
and n = 4 (0,  ----) as a function of Reynolds number for A = 2. Continuous lines connect 
numerical values from this work, discontinuous lines are from the boundary-layer analysis by 
Borkar & Tsamopoulos (1991). The dashed line in ( b )  is the inviscid result by Sanz & Diez (1989). 

cylindrical column. When gravity is present, this bifurcation is broken, and the 
originally stable family of cylindrical shapes exhibits a limit point, the location of 
which depends on B (see domain 0.14 < a  < 0.2 in their figures 13 and 14). 
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n = l  n = 2  n = 3  n = 4  

Re g r  gi c r  ci flr 6 1  6, g i  

1000 0.016 5.083 0.048 11.17 0.101 18.77 0.176 27.42 
500 0.029 5.080 0.091 11.16 0.192 18.75 0.337 27.39 
200 0.065 5.073 0.208 11.14 0.434 18.70 0.754 27.28 
100 0.119 5.060 0.385 11.10 0.799 18.61 1.368 27.12 
75 0.152 5.052 0.496 11.07 1.027 18.55 1.751 27.01 
50 0.215 5.036 0.708 11.02 1.458 18.43 2.470 26.78 
25 0.388 4.991 1.283 10.84 2.614 18.00 4.374 25.98 
10 0.846 4.859 2.706 10.19 5.313 16.43 8.607 23.14 
5 1.549 4.601 4.517 8.922 8.301 13.65 12.90 18.47 
4 1.885 4.442 5.269 8.240 9.484 12.28 14.65 16.25 
3 2.432 4.126 6.413 7.007 11.35 9.76 17.57 11.84 
2.8 2.587 4.021 6.729 6.617 11.87 8.98 18.40 10.17 
2.5 2.86 3.81 7.29 5.83 12.7 6.9 19.6 5.8 
2.45 2.92 3.77 7.41 5.67 12.9 6.5 19.7 4.6 

TABLE 4. Real and imaginary part of eigenvalues of the first four axisymmetric modes with 
varying Reynolds number and for A = 2 
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FIGURE 5. Typical shapes of floating zone without gravitational effects for (a) first, (b) second, 
(c) third and (d) fourth mode under an axisymmetric disturbance, with Re = 10, A = 2. 
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Re = 10 Re = 500 

m a, ( x 108) b, ( x  lo3) a, ( x 108) b, ( x  lo4) 

- 0 0.04 - 0.16 
1 0.69 -38.9 -2.4 1360.0 

3 0.35 - 1.79 -0.85 26.6 

5 -0.22 -0.445 0.96 5.71 

7 0.12 -0.188 -0.24 2.14 

9 0.26 -0.0954 -0.76 0.778 

11 0.11 -0.0442 0.10 0.597 

13 -0.71 -0.0224 2.4 0.0917 

2 -0.39 5.88 0.71 -91.7 

4 -0.12 0.799 0.17 - 11.1 

6 -0.27 0.278 0.85 - 3.43 

8 -0.07 0.125 0.07 -1.37 

10 0.33 0.0628 1.3 -0.736 

12 -0.09 0.0492 0.83 -0.370 

14 -0.06 0.0197 0.044 -0.0693 

TABLE 5. Fourier coefficients predicted by decomposing the interface shape of the first 
axisymmetric mode with Re = 10 and 500 and for A = 2, B = 0 
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FIGURE 6. (a) Damping rate and (b) frequency of the first four axisymmetric modes as a function 
of Bond number for Re = 10, A = 1. Open circles indicate numerical results of this work. The 
vertical dashed line indicates location of limit point in static analysis. 
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FIGURE 7. As figure 6, but for A = 2. 

Consequently, the analysis of Coriell et al. was confirmed and related to that of 
Rayleigh. Beyond the limiting values of aspect ratio, static solutions either do not 
exist or they appear in pairs both of which are unstable. In the present study, 
axisymmetric eigensolutions will be computed only for combinations of A and B for 
which static shapes exist and are stable. 

The damping rate and oscillation frequency as a function of B are shown in figures 
6 and 7 for A = 1 and 2 respectively. The limiting Bond number in the former case 
is approximately 0.8 and in the latter it is 2.75. The modified Reynolds number is 10 
in both cases. 

The accuracy of the computed values decreases as B approaches the stability limit. 
Keeping all other parameters the same, eigenvalues increase as A increases. It is also 
observed that for all modes and aspect ratios examined both damping rate and 
frequency decrease as B increases. This is because static shapes under gravity 
resemble the eigenfunctions more than the cylindrical shapes do (see figure 8). 
Therefore, less energy is required for (i.e. lower frequency) and consumed by (i.e. 
lower damping rate) the underdamped oscillations. At the stability limit itself the 
real part of the first eigenvalue will change sign and this mode and the liquid bridge 
will become unstable. Tables 6 and 7 give the calculated eigenvalues for A = 1 and 
2, respectively. 

Figure 9 shows the variation of the eigenvalues with Re for B = 1 and A = 2. 
Effects similar to those discussed for B = 0 are observed here also. For example, the 
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TABLE 6. 

n =  1 n = 2  n = 3  n = 4  

g r  ui (Tr g i  0, ri mr (Ti 

0.181 1.249 0.651 3.167 1.33 5.53 2.24 8.15 
0.164 1.166 0.636 2.975 1.28 5.24 2.16 7.77 
0.151 1.104 0.627 2.841 1.25 5.04 2.1 1 7.50 
0.130 1.009 0.617 2.649 1.22 4.75 2.04 7.11 
0.07 0.77 0.60 2.28 1.1 4.1 1 .9 6.3 

Real and imaginary part of eigenvalues of the first four axisymmetric modes with 
varying Bond number for Re = 10, A = 1 

damping rate asymptotically approaches zero as Re increases, higher modes exhibit 
higher damping rates and frequencies, and as Re decreases the motion becomes 
overdamped. As explained in $ 5 ,  calculations with gravity are more costly since a 
plane of symmetry or antisymmetry ( z  = 0) no longer exists. Consequently, 
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n = l  n = 2  n = 3  n = 4  

B g r  (Ti g r  (Ti g r  (Ti flr (Ti 

0.5 0.837 4.808 2.688 10.08 5.28 16.30 8.57 23.00 
1 .o 0.810 4.647 2.635 9.76 5.17 15.83 8.41 22.38 
1.5 0.762 4.345 2.548 9.17 5.00 14.95 8.15 21.25 
2.0 0.683 3.828 2.444 8.16 4.81 13.51 7.88 19.41 
2.25 0.613 3.437 2.399 7.41 4.76 12.50 7.82 18.2 
2.5 0.46 2.86 2.37 6.36 4.7 11.3 7.8 16.8 

TABLE 7. Real and imaginary part of eigenvalues of the first four axisymmetric modes with 
varying Bond number for Re = 10, A = 2 

I I I I I 1 1 1 1  I I I I I I 1 1 1  I I I I l l l d  

1 I I I I 1 1 1 1  I I I I I 1 1 1 1  I I I I 1 1 1 1  
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FIGURE 9. (a) Damping rate and (b) frequency of the first four axisymmetric modes as a function 
of Reynolds number for A = 2, B = 1. Open circles indicate numerical results of this work. 
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n = l  n = 2  n = 3  n = 4  

Re g r  gi g r  (TI g r  gi g r  g i  

1000 -0.054 4.69 0.008 10.5 0.08 17.9 0.17 26.4 
500 -0.042 4.73 0.034 10.5 0.16 17.9 0.32 26.4 
200 0.001 4.76 0.138 10.5 0.37 17.8 0.74 26.3 
100 0.059 4.77 0.312 10.5 0.72 17.8 1.32 26.1 
75 0.093 4.77 0.423 10.5 0.93 17.7 1.68 26.0 
50 0.159 4.77 0.634 10.5 1.35 17.6 2.36 25.8 
25 0.339 4.76 1.21 10.4 2.49 17.3 4.21 25.1 
10 0.810 4.65 2.64 9.76 5.17 15.8 8.41 22.3 
5 1.519 4.395 4.45 8.52 8.17 13.1 12.7 17.7 
4 1.856 4.235 5.21 7.84 9.36 11.7 14.5 15.5 
3 2.404 3.910 6.37 6.59 11.26 9.1 17.5 11.1 

TABLE 8. Real and imaginary part of eigenvalues of the first four axisymmetric modes with 
varying Reynolds number for B = 1, A = 2 
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FIGURE 10. Typical shapes of floating zone without gravitational effect for (a) zeroth, (b)  first, (c) 
second and (d) third mode, under a non-axisymmetric disturbance, with Re = 10, A = 2, k = 1 .  

calculations with values ofRe below 3 were not pursued. Numerical results are shown 
in table 8. This table reveals more clearly that even though the static bridge is stable 
(since B = 1, A = Z), when perturbed and Re is large it may become unstable. 
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0.5 I I I I I I I I I I 1 
0.4 

0 
.-a 

2 
o4 0.3 

E, 0.2 

C 
a. .- 

tl 
0.1 

0 

40 30 Q 

0 1 
1 2 3 

Aspect ratio 

FIGURE 14. (a) Damping rate and ( b )  frequency of the first five non-axisymmetric modes as a 
function of aspect ratio for Re = 1000, k = 1 .  Open circles indicate numerical results of this 
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FIGURE 15. As figure 14 but for k = 2. 

As explained in the Introduction, the surface tension of the material can be 
measured first by a static method. In  addition, forced or free oscillations may be used 
for its dynamic measurement. However, the eigenfrequency exhibits a weak 
dependence on Re for Re as low as 5 ,  when n = 1 (the easier mode to excite), whereas 
the damping rate exhibits a strong enough dependence on Re, for Re < 50, see figures 
4 and 9. It should be noted here that most molten ceramics and semiconductors are 
expected to fall in this range. Therefore, for reliable measurements of both surface 
tension and viscosity using only dynamic data from this work, it is necessary to first 
measure frequency and damping rate for perhaps one (or two) values of A ,  then 
assume a value for y which sets the timescale in order to calculate the dimensionless 
frequency and damping rate, and finally use these in the appropriate figures to 
deduce values of Re. The procedure is repeated till the two (or four) values of Re 
coincide. The weak dependence of both ur and a, on B is rather beneficial for the 
measurements, since the unavoidable gravitational field will not alter the results 
significantly. In other words, the plots.of ur and ui ws. B will not be used to measure 
either viscosity or surface tension, rather they will be used to adjust values of gr and 
ui properly. 

6.3. Non-axisymmetric disturbances in zero gravity ( k  4 0,  B = 0) 
Since B = 0 the static shape is again a cylinder. Non-axisymmetric modes have been 
experimentally observed by both Fowle et al. (1979) and Sanz & Diez (1989). 

20-2 
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FIQURE 16. (a) Damping rate and ( b )  frequency of the first five non-axisymmetric modes as a 
function of Reynolds number for A = 2, k = 1 .  Open circles indicate numerical results of this 
work, dashed lines indicate results by Sanz & Diez (1989). 

Azimuthal variations are described by the wavenumber k. The lowest mode that 
arises now has a plane of symmetry a t  z = 0, but i t  does not correspond to  any mode 
presented earlier. Shapes of liquid bridges in this mode resemble one half of a sine 
wave (see figure 10). For this reason, Fowle et al. called i t  the 'C'  mode; in the present 
work it is identified by n = 0. This mode is not allowed with axisymmetric 
disturbances because i t  would not conserve the volume of the liquid in the bridge. 
Each higher mode corresponds to one already presented for k = 0. Cross-sections of 
modes at the (O = 0,O = a)-plane and for n = 1 , 2 , 3  are shown in figure 10. 

Both the damping rate and the frequency are seen to increase with the azimuthal 
wavenumber in figure 11.  This effect is similar to increasing n and is because more 
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FIQURE 17. As figure 16 but for k = 2. 

complex flow patterns dissipate energy more efficiently (i.e. higher a,) and are more 
difficult to excite (i.e. higher ai). When k = 0 results from the axisymmetric analysis 
are reproduced. 

The dependence of the eigenvalues on aspect ratio for Re = 10 is shown in figures 
12 and 13 for k = 1 and 2, respectively. The same dependence, but for Re = 1000, is 
shown in figures 14 and 15. Earlier observations and explanations are valid here as 
well. For example, eigenvalues monotonically increase with A, n and k. Calculated 
frequencies at  large Re agree very well with those reported by Sanz & Diez, but their 
analysis cannot predict damping rates. Moreover, the bridge remains stable to 
dynamic and non-axisymmetric disturbances, even if A is decreased below the 
Rayleigh limit (A = 0.5). Thus, a, remains positive irrespective of the values of k and 
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Re. This is in accordance with the well-known results by Rayleigh (1879) and the 
more recent analysis of Preziosi et al. (1989). 

Finally, the effect of Re for A = 2 is shown in figures 16 and 17 for k = 1 and 2, 
respectively. The stabilizing influence of larger azimuthal wavenumbers prevails 
throughout the study. Results from inviscid analysis (Sanz & Diez) are approached 
asymptotically as Re increases. Numerical values for non-axisymmetric oscillations 
and further results are given in Chen (1991). 

7. Conclusions 
Analytical and numerical methods have been used in order to determine the 

eigenvalues and eigenmodes of viscous oscillations of capillary bridges. Gravitational 
effects as well as axisymmetric and three-dimensional disturbances have been 
studied. It was found that both the damping rate and frequency of oscillation 
increases with the axial wavenumber (n), the azimuthal wavenumber (k), and the 
aspect ratio ( A ) ,  and an explanation was given. Results obtained from inviscid and 
boundary-layer analyses have been confirmed and the range of their validity in terms 
of Re has been found. In  small bridges (j? = = 0.5 cm) gravity does not modify the 
eigenvalues significantly, although static and dynamic shapes appear quite distorted. 
In spite of the fact that higher modes ( k  $; 0,  n > 1) have been experimentally 
excited, lower modes would provide important physical data more readily. 

Usage of the Cornell National Supercomputer Facilities (CNSF) is gratefully 
acknowledged. 
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